Geohazards in the Himalaya
GEOL 3000 (3 Credits / 45 class hours)

SIT Study Abroad Program:
Nepal: Geoscience in the Himalaya

PLEASE NOTE: This syllabus represents a recent term. Because courses develop and change over time to take advantage of unique learning opportunities, actual course content varies from term to term.

Course Description
This course focuses on environmental geohazards as a perspective through which to study the interactions between human and Earth systems in the Himalaya. Students will gain the ability to synthesize observations of Earth science and human systems to determine key relationships, hazards, and solutions. The rugged terrain of an active mountain range limits habitation and travel but also contributes to diverse and multifaceted societies within a concentrated region. The sediments and soils that come from the mountains provide rich agricultural lands; but settlements are precariously balanced on steep slopes or besides rushing rivers and are subject to geohazards such as landslides, floods, and earthquakes. Furthermore the climate system is rapidly changing due to practices of industrialized nations, leading to additional challenges. Students will investigate how Earth systems effect and influence society and how human decisions and actions bear consequences on the environment and determine societal risk in the face of geohazards. Particularly emphasis will be given to study of ethical, low cost, and technologically simple solutions that dovetail with other sustainable development practices.

Learning Outcomes
By the end of the course, students will be able to:
- a) Identify landforms such as river terraces, landslides, debris flows, flood plains, and moraines;
- b) Analyze an area for geohazards and propose mitigation or avoidance strategies;
- c) Identify solutions to existing challenges and weigh relative merits of different lines of action (particularly in regard to dovetailing with sustainable development practices).
- d) Conduct a landslide hazards analysis;
- e) Compare and contrast challenges and opportunities related to topics such as hydropower, climate change, and water resource management.

Language of Instruction
This course is taught in English, but students will be introduced to Nepali vocabulary related to food, logistics, and simple small talk.

*This syllabus is representative of a typical semester. Because courses develop and change over time to take advantage of unique learning opportunities, actual course content varies from semester to semester.
Course Schedule

Orientation & Introductory Activities (9 hours)
The first four days of the program are the orientation. The next two are travel to the initial field excursion site with educational stops along the way. Out of this about half is devoted to learning that supports the geohazards and human-Earth system interactions component of the program.

Geohazards of the Himalaya - Overview
Series of lectures on topics such as earthquake hazards, climate change, and flooding. Exact topics will vary depending on lecturer availability.
Required Reading: Pre-program readings

Nepal Culture and History
Lecture on Nepali culture and history and field trip to cultural/religious site in Kathmandu Valley such as Bhaktapur or Patan.
Required Reading: Pre-program readings

Nepali Language
Daily class sessions to learn basics of Nepali related to travel, food, and small talk.

Field trip stops
En route to the field excursion the program makes several stops at relevant sites such as hydropower station, river terraces, or landslide site.
Required Reading: None

Earth and Human Systems Analysis (16 hours)
This module will start at the upstream end of the Kali Gandaki traverse after the conclusion of Earth Science Field Methods. The primary emphasis will be on developing field skills and, as appropriate, augmenting with remote sensing data sets (stereo air photos, satellite imagery, etc.) After an introductory day, the group will travel back down the Kali Gandaki valley, this time observing and analyzing geomorphic features, land use, and the ongoing intersections between the Earth and human systems. This will provide a counter point to the analysis on the upstream journey that focused on deciphering the geologic history of the region. Each team of students will carry out on small research project related to one of these themes.

Introduction
Overview lecture on geomorphic and land-use features. Introduction to air photo and satellite image analysis. Students identify research topic.
Required Reading: None

Research project
Student teams carry out small research project on theme of choice and complete a geomorphology and land-use map of the study region.
Required Reading: None

*This syllabus is representative of a typical semester. Because courses develop and change over time to take advantage of unique learning opportunities, actual course content varies from semester to semester.
Final presentations
Student teams give group presentation on research findings.
Required Readings: None

Geohazards and Engineering Geology (20 hours)
Landslides and flooding present the most constant geohazards in Nepal with deaths occurring every year, as well as numerous roads blocked and infrastructure damaged. After returning to the road system, students will conduct field and GIS analysis of landslide hazard in a given region and propose appropriate low-cost hazard mitigation solutions.

Introduction to Geoengineering and Landslide Hazards
Several lectures to introduce the topic. One-day group field excursion to learn basic field methods.
Required Reading: Landslide Engineering Short-course Packet

Field work
Student teams will collect field data related to landslide hazard.
Required Reading: None

GIS analysis
Students will use GIS to analyze digital topographic and climate data together with field data to determine earthquake hazard for a given area.
Required Reading: Landslide Engineering Short-course Packet

Description of Assignments
More detailed instructions and grading criteria will be given out at the start of each assignment. The paragraphs below provide general information.

Participation & collaboration: Students must attend ALL program components. Any unexcused absence will result in a minimum of 5% reduction in final course grade. Physically leaving the program will be grounds for dismissal (see Handbook Conditions of Participation). However, the participation and collaboration grade rests on much more than merely being present. A-level participation requires attributes such as: coming with all needed materials; daily input to group discussions that includes analysis and/or creativity; active listening and productive responses to comments by others. When students are working in small groups, each person is expected to contribute equally with both physical and mental tasks.

Field notebook and small assignments: High quality field analysis depends on detailed and comprehensive field notes. Invariably students will develop additional questions when it comes time to do a full project write-up and detailed notes will be essential to answer or dismiss these questions. Students will be coached on what these notes require and then evaluated on consistency, accuracy, and completion. Different types of fieldwork may require different sets of observations. In preparation for the larger projects, students may be given smaller practice assignments that should be recorded in field notebooks.

Earth and human systems analysis: Students will map and analyze intersections between Earth systems and human society. The project will start with an air photo and satellite analysis of landforms (river terraces, landslides, etc.) and human land use. Teams of students will then choose specific topics in the sphere of Earth-human system interactions for detailed field study. They will identify examples of conflicts (i.e. hazards), benefits, and solutions strategies. This perspective of seeing Earth systems through the lens of ongoing human interactions will provide a valuable contrast to the approach taken on the upstream trip, which focused on determining the geologic past. Possible subtopics include: landslides, river control measure, building materials, climate change, road building, hydropower development, water quality, and

*This syllabus is representative of a typical semester. Because courses develop and change over time to take advantage of unique learning opportunities, actual course content varies from semester to semester.
agricultural placement. Each team will produce geomorphology and land use map and give a presentation. High quality maps will correctly identify observed landforms and detail the field and remote sensing observations used to make determinations. Presentations will contain critical evaluations of: 1) challenges faced by Himalaya societies in living in such a geologically dynamic region; 2) benefits brought by the dynamic Earth system; 3) examples of existing solutions to potential problems from hazards; and 4) ideas for other solutions or mitigation strategies. Excellent presentations will be concise but clearly communicate the differences and commonalities of the different contributing students.

Geohazards and Engineering Geology Project: After the project returns to the road system, the students will conduct a larger study related to landslide and risk along one or more regions of the road system between Kali Gandaki and Kathmandu. Students will learn both field analysis as well as statistical and/or GIS methods for assessing hazard from attributes such as rock bedding orientation, rock strength, soil characteristics, water saturation, fault proximity, and slope steepness. Results will be a map outlining likely high hazard areas and a written report. Risk due to society preparation (or lack thereof) will also be considered in the assessment. High quality write-ups will have well drafted maps clearly based on field and remote sensing analyses.

Assessment:
- Participation & Collaboration: 15%
- Field notebook & small assignments: 10%
- Earth and human system analysis: 35%
- Geohazards and engineering geology: 40%

Grading Scale
- 94-100% A Excellent
- 90-93% A-
- 87-89% B+
- 84-86% B Above Average
- 80-83% B-
- 77-79% C+
- 74-76% C Average
- 70-73% C-
- 67-69% D+
- 64-66% D Below Average
- below 64 F Fail

Expectations and Policies
In order to best facilitate your learning, my expectations are as follows:

Engage your brain and ask questions
Be ready to contribute actively every day. Success in this program will require active participation.

Show up prepared
Be on time, have your readings completed, and points in mind for discussion or clarification.

Think critically
This course is designed to help you develop your critical thinking abilities; these life skills will help you analyze, infer, evaluate, and make reasoned judgments related to many facets of life.

This syllabus is representative of a typical semester. Because courses develop and change over time to take advantage of unique learning opportunities, actual course content varies from semester to semester.
All assignments must be completed on the due date/time. Written assignments received after the specified time will be considered late and as such, docked 10% per day. Any written assignments not received by 5 days after the due date will receive a zero. Presentations must be completed at the specified time. Exceptions will only be for serious medical reasons and extensions MUST be arranged before the due date/time.

Comply with academic integrity policies (no plagiarism or cheating, nothing unethical).

Respect differences of opinion (classmates’, lecturers, local constituents engaged with on the visits) You are not expected to agree with everything you hear, but you are expected to listen across difference and consider other perspectives with respect.

Please refer to the SIT Study Abroad handbook for policies on academic integrity, ethics, warning and probation, diversity and disability, sexual harassment and the academic appeals process. Also, refer to the specific information available in the Student Handbook and the Program Dossier given to you at Orientation.

*This syllabus is representative of a typical semester. Because courses develop and change over time to take advantage of unique learning opportunities, actual course content varies from semester to semester.